Cursos de MLOps

Cursos de MLOps

Cursos de MLOps impartidos por instructor en vivo en Peru.

Testimonios

★★★★★
★★★★★

Algunos de nuestros clientes

MLOps Subcategorías

Programas de los cursos MLOps

Nombre del Curso
Duración
Descripción General
Nombre del Curso
Duración
Descripción General
35 horas
Descripción General
Kubeflow is a toolkit for making Machine Learning (ML) on Kubernetes easy, portable and scalable. AWS EKS (Elastic Kubernetes Service) is an Amazon managed service for running the Kubernetes on AWS.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.

By the end of this training, participants will be able to:

- Install and configure Kubeflow on premise and in the cloud using AWS EKS (Elastic Kubernetes Service).
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is a machine learning library and Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on AWS.
- Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on Azure.
- Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Google Cloud Platform (GCP).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on GCP and GKE.
- Use GKE (Kubernetes Kubernetes Engine) to simplify the work of initializing a Kubernetes cluster on GCP.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other GCP services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to IBM Cloud Kubernetes Service (IKS).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on IBM Cloud Kubernetes Service (IKS).
- Use IKS to simplify the work of initializing a Kubernetes cluster on IBM Cloud.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other IBM Cloud services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications. OpenShift is an cloud application development platform that uses Docker containers, orchestrated and managed by Kubernetes, on a foundation of Red Hat Enterprise Linux.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an OpenShift on-premise or hybrid cloud.

- By the end of this training, participants will be able to:
- Install and configure Kubernetes and Kubeflow on an OpenShift cluster.
- Use OpenShift to simplify the work of initializing a Kubernetes cluster.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Call public cloud services (e.g., AWS services) from within OpenShift to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 horas
Descripción General
Kubeflow is a toolkit for making Machine Learning (ML) on Kubernetes easy, portable and scalable.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.

By the end of this training, participants will be able to:

- Install and configure Kubeflow on premise and in the cloud.
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about Kubeflow, please visit: https://github.com/kubeflow/kubeflow
21 horas
Descripción General
MLflow is an open source platform for streamlining and managing the machine learning lifecycle. It supports any ML (machine learning) library, algorithm, deployment tool or language. Simply add MLflow to your existing ML code to share the code across any ML library being used within your organization.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.

By the end of this training, participants will be able to:

- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
35 horas
Descripción General
MLOps is a set of tools and methodologies for combining Machine Learning and DevOps practices. The goal of MLOps is to automate and optimize the deployment and maintenance of ML systems in production.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.

By the end of this training, participants will be able to:

- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.

Próximos Cursos MLOps

Cursos de Fin de Semana de MLOps, Capacitación por la Tarde de MLOps, MLOps boot camp, Clases de MLOps, Capacitación de Fin de Semana de MLOps, Cursos por la Tarde de MLOps, MLOps coaching, Instructor de MLOps, Capacitador de MLOps, MLOps con instructor, Cursos de Formación de MLOps, MLOps en sitio, Cursos Privados de MLOps, Clases Particulares de MLOps, Capacitación empresarial de MLOps, Talleres para empresas de MLOps, Cursos en linea de MLOps, Programas de capacitación de MLOps, Clases de MLOps

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

is growing fast!

We are looking to expand our presence in Peru!

As a Business Development Manager you will:

  • expand business in Peru
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

Este sitio en otros países / regiones