Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Overview of AI in Python
- Key concepts and scope of AI
- Python libraries for AI development
- AI project structure and workflow
Data Preparation for AI
- Data cleaning, transformation, and feature engineering
- Handling missing and unbalanced data
- Feature scaling and encoding
Supervised Learning Techniques
- Regression and classification algorithms
- Ensemble methods: Random Forest, Gradient Boosting
- Hyperparameter tuning and cross-validation
Unsupervised Learning Techniques
- Clustering methods: K-Means, DBSCAN, hierarchical clustering
- Dimensionality reduction: PCA, t-SNE
- Use cases for unsupervised learning
Neural Networks and Deep Learning
- Introduction to TensorFlow and Keras
- Building and training feedforward neural networks
- Optimizing neural network performance
Reinforcement Learning (Intro)
- Core concepts of agents, environments, and rewards
- Implementing basic reinforcement learning algorithms
- Applications of reinforcement learning
Deploying AI Models
- Saving and loading trained models
- Integrating models into applications via APIs
- Monitoring and maintaining AI systems in production
Summary and Next Steps
Requirements
- Solid understanding of Python programming fundamentals
- Experience with data analysis libraries such as NumPy and pandas
- Basic knowledge of machine learning concepts and algorithms
Audience
- Software developers aiming to expand their AI development skills
- Data analysts seeking to apply AI techniques to complex datasets
- R&D professionals building AI-powered applications
35 Hours
Testimonials (3)
The fact of having more practical exercises using more similar data to what we use in our projects (satellite images in raster format)
Matthieu - CS Group
Course - Scaling Data Analysis with Python and Dask
Very good preparation and expertise of a trainer, perfect communication in English. The course was practical (exercises + sharing examples of use cases)
Monika - Procter & Gamble Polska Sp. z o.o.
Course - Developing APIs with Python and FastAPI
Trainer develops training based on participant's pace